biomechanics_Biomechanics and Modeling in

       现在,请允许我来为大家分享一些关于biomechanics的相关知识,希望我的回答可以给大家带来一些启发。关于biomechanics的讨论,我们开始吧。

1.美国机械工程专业的名校推荐

2.求通顺英语翻译!!快~!

3.动作捕捉仪的系统分析

4.美国PTA网球教练认证问题

5.怎么写 review paper

6.曹艳平的学术成果

biomechanics_Biomechanics and Modeling in

美国机械工程专业的名校推荐

机械工程专业 ME(工程硕士master of engineering)基本都设置在工程学院,具体有的是单独的Department, 有的作为department的一个分支。在美国不同学校的机械工程专业ME设置也都各不相同,研究方向和学校规模也都迥异。我们来了解一下机械工程专业比较牛的学校有哪些:

Purdue University-West Lafayette (Purdue U) 普渡大学

        Purdue University-West Lafayette (Purdue U):作为一个单独的学院,规模非常大,招生人数几乎是加州理工的5倍,十几个研究领域,为了迎合工业领域的需要,学校的机械工程学院涉及到了从设计到流体力学等领域的极大跨越,目的是为了21世纪对人才需要的多角度培养,致力于解决工业和社会发展对人才的需要。

University of California at Berkeley (UCB) 加州伯克利

        University of California at Berkeley (UCB):加州伯克利的ME是作为一个单独的Department存在的。伯克利的机械专业在全美排名一直是名列前茅,仅次于斯坦福和麻省理工。作为一所顶尖的公立研究型大学,学校的研究实验室是最有效率,富有创造力和生产力的,学生也都极具代性。学校提供ME和MS的机械硕士学位,多数的MS学生走了继续读PHD的路,偏研究的专业设置是学校的一个特点。

University of Illinois at Urbana-Champaign(UIUC) 伊利诺伊香槟

        University of Illinois at Urbana-Champaign(UIUC):伊利诺伊香槟一直名列全美最优秀的理工大学之一,其ME专业也一直属于名列前茅。ME专业设置在单独的Mechanical Science & Engineering Department里面,专业设置强调尽可能的丰富灵活性,学生可以选择fluid mechanics and thermal sciences, solidmechanics and materials, controls and dynamics, nanomechanics and nanomanufacturing, and biomechanics.等多领域的课程,甚至其他department的课程也可以计入学分,给有多种研究兴趣的学生提供了极佳的平台。

California Institute of Technology( Caltech) 加州理工

        California Institute of Technology( Caltech):加州理工的ME专业设置还是比较特殊的ME和Civil Engineering 设置在一个department,叫做Department ofCivil and Mechanical Engineering.和其他加州理工小而精的研究项目一样,机械工程专业也是规模不大,所以招生人数也是相应较少,学校的ME专业排名连年攀升,由 2001年到2004年一直是第八名,现如今蹿升到第三四名。偏向于培养在工业领域和学术领域都有突出成就的人才。学校有对近年的毕业生做调查,大约 30%的毕业生加入了tenure-track academic positions的行列,也就是终生教学事业,分别进入到MIT、UCLA、Princeton, Purdue, Johns Hopkins, UCLA, U. Texas(Austin), U. Michigan, U. Pennsylvania, Carnegie Mellon,等名校任教,50%进入了工业领域,另有20%进入了博士后研究项目。

求通顺英语翻译!!快~!

       (转载,仅供参考)

       SCI收录生物材料学科期刊22种,其中英国生物材料期刊8种,荷兰生物材料期刊5种,美国生物材料期刊4种,中国、瑞士、日本、意大利、德国生物材料期刊各1种。中国《仿生工程学报》2007年开始被SCIE收录。

       2005-2008年8月共收录中国(不包括台湾)生物材料学科论文1330篇,其中2008年392篇,2007年398篇,2006年261篇,2005年279篇。

       2005-2008年8月中国生物材料研究论文主要发表在COLLOIDS AND SURFACES B-BIOINTERFACES 《胶体与表面,B辑:生物界面》236篇,BIOMATERIALS 《生物材料》216篇,JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE 《材料科学杂志:医用材料》174篇(该期刊中国作者发文排第一位),JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A 《生物医学材料研究杂志A辑》194篇, JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS 《生物医学材料研究杂志B辑:应用生物材料》94篇。

       希望该文能对大家的投稿带来一定的帮助。

       SCI收录生物材料22种期刊如下:

       1. ACTA BIOMATERIALIA 《生物材料学报》荷兰

       2. ARTIFICIAL CELLS BLOOD SUBSTITUTES AND BIOTECHNOLOGY 《人造细胞、血液替代品和生物技术》美国

       3. BIO-MEDICAL MATERIALS AND ENGINEERING 《生物医学材料与工程》荷兰

       4. BIOINSPIRATION & BIOMIMETICS 《生物灵感与仿生学》英国

       5. BIOINTERPHASES USA

       6. BIOMATERIALS 《生物材料》英国

       7. BIOMEDICAL MATERIALS 《生物医学材料》英国

       8. CELLULAR POLYMERS 《泡沫聚合物》英国

       9. COLLOIDS AND SURFACES B-BIOINTERFACES 《胶体与表面,B辑:生物界面》荷兰

       10. DENTAL MATERIALS 《牙科材料》英国

       11. DENTAL MATERIALS JOURNAL 《牙科材料杂志》日本

       12. EUROPEAN CELLS & MATERIALS 《欧洲细胞和材料》瑞士

       13. JOURNAL OF APPLIED BIOMATERIALS & BIOMECHANICS 《应用生物材料与生物力学杂志》意大利

       14. JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS 《生物活性与相容性聚合物杂志》英国

       15. JOURNAL OF BIOBASED MATERIALS AND BIOENERGY 《生物基材料与生物能杂志》美国

       16. JOURNAL OF BIOMATERIALS APPLICATIONS 《生物材料应用杂志》英国

       17. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 《生物材料科学杂志:聚合物版》荷兰

       18. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A 《生物医学材料研究杂志A辑》美国

       19. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS 《生物医学材料研究杂志B辑:应用生物材料》美国

       20. JOURNAL OF BIONIC ENGINEERING《仿生工程学报》中国

       Quarterly

       ISSN: 1672-6529

       SCIENCE CHINA PRESS, 16 DONGHUANGCHENGGEN NORTH ST, BEIJING, PEOPLES R CHINA, 100717

       21. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE 《材料科学杂志:医用材料》荷兰

       22. MACROMOLECULAR BIOSCIENCE 《高分子生物科学》德国

动作捕捉仪的系统分析

       The larger the animal, sprinting speed faster? Published in March 20th in the "animalphysiology and biochemical" (Physiological and Biochemical Zoology) a research report, the fact is not always the case, and illustrates the reasons.

       Typically, large animal ran faster than the smaller animal, because they have longer legs. But this argument only up to a certain extent, land of the fastest animal is not the largest animal,not least, it is between the two. Think of an elephant, the mouse and the cheetah's head.

       America Harvard University Kerry Monte (Christofer J. Clemente) and his team in order to study the intra - and inter species have the same phenomenon, choice of monitor lizards as observation object. Adult lizards in the individual difference is very big, is an ideal species sizeaffect the speed test. The researchers selected 2 to 12 pounds (about 0.91 to 5.44 kg)weight ranging from the dragon, in they sprinted 45 feet (about 13.7 meters) long timedistance, as photographed. Finally, medium-sized lizard is the fastest, and found the reason.

       Researchers are using a high-speed camera and the lizard body of the key points on theplacement of a marker, a computer model, comparison of different size lizards running pace.

       Then, the researchers focused on the investigation of animal body size between the pacewith is how to change, finally found the pace of change and speed change is consistent. Is greater than a certain size monitor, probably due to get bigger, bones and muscles support the body's ability to reduce, thus began to change the running mode.

       Check the phenomenon in single species inside, help researchers understand why the largest animal runs and not the fastest. Large animal in evolution is closely related to each other, so it's hard to say, because of the slower is the biomechanics was brought, orevolutionary history by large animal common brought other factors.

       Compared with multi species research, within species studied more deviation factorsconducive to the elimination of evolution. Experimental results show that, large animal could not run fast because a problem brought restriction biomechanics, leading to run more slowly.

       Kerry Monte said, a large lizard legs could not support their body, they have to change therunning mode, so that the running speed slow down.

       分解:

       动物个头越大,疾跑时速度越快?3月20日发表于《生理学和动物生化》(Physiological and Biochemical Zoology)的 研究 报告显示,事实并不总是这样,并阐明了原因。

       The larger the animal, sprinting speed faster? Published in March 20th in the "animalphysiology and biochemical" (Physiological and Biochemical Zoology) a research report, the fact is not always the case, and illustrates the reasons.

       通常情况下,个头大的动物比小些的动物跑得更快,因为他们的腿更长。但这一说法只在某种程度上成立,陆地上跑得最快的动物既不是最大的动物,也不是最小的,而是介于这二者之间。想想大象,老鼠和猎豹的个头吧。

       Typically, large animal ran faster than the smaller animal, because they have longer legs. But this argument only up to a certain extent, land of the fastest animal is not the largest animal,not least, it is between the two. Think of an elephant, the mouse and the cheetah's head.

       美国哈佛大学的克里蒙特(Christofer J. Clemente)和他的团队为了研究物种内和物种间是否都有同样现象的存在,选择了巨蜥类作为观测对象。成年巨蜥在个体上相差甚大,是测验个头大小影响速度的理想物种。研究人员选取2到12磅(约0.91至5.44千克)重不等的巨蜥,在它们全速冲刺45英尺(约13.7米)长距离时计时,为拍照记录。最后发现,中型蜥蜴是最快的,并发现了其中的原因。

       America Harvard University Kerry Monte (Christofer J. Clemente) and his team in order to study the intra - and inter species have the same phenomenon, choice of monitor lizards as observation object. Adult lizards in the individual difference is very big, is an ideal species sizeaffect the speed test. The researchers selected 2 to 12 pounds (about 0.91 to 5.44 kg)weight ranging from the dragon, in they sprinted 45 feet (about 13.7 meters) long timedistance, as photographed. Finally, medium-sized lizard is the fastest, and found the reason.

       研究人员利用高速摄像机和在蜥蜴身体上的关键点放置标记,建立出计算机模型,比较了不同大小蜥蜴的跑动步伐。

       Researchers are using a high-speed camera and the lizard body of the key points on theplacement of a marker, a computer model, comparison of different size lizards running pace.

       接着,研究人员着重于调查动物步伐随着身体大小不同是怎么改变的,最后发现步伐的改变与速度改变是一致的。大于某个尺寸的巨蜥,可能是由于块头变大,骨骼和肌肉支撑住身体的能力减小,从而开始改变跑动方式。

       Then, the researchers focused on the investigation of animal body size between the pacewith is how to change, finally found the pace of change and speed change is consistent. Is greater than a certain size monitor, probably due to get bigger, bones and muscles support the body's ability to reduce, thus began to change the running mode.

       在单一物种内测验此类现象,有助于研究人员弄明白为什么最大的动物跑得并不是最快。大型动物彼此在演化上密切相关,所以很难下结论说,速度更慢的原因是个头带来的生物力学问题,还是由大型动物共同的演化历史带来的其他因素。

       Check the phenomenon in single species inside, help researchers understand why the largest animal runs and not the fastest. Large animal in evolution is closely related to each other, so it's hard to say, because of the slower is the biomechanics was brought, orevolutionary history by large animal common brought other factors.

       与多物种间比较研究相比,在同一物种内展开研究更有利于消除演化因素带来的偏差。实验结果显示,大动物跑不快是因为个头问题带来了生物力学上的约束限制,导致跑得更慢。

       Compared with multi species research, within species studied more deviation factorsconducive to the elimination of evolution. Experimental results show that, large animal could not run fast because a problem brought restriction biomechanics, leading to run more slowly.

       克里蒙特表示,较大蜥蜴的腿支撑不住他们的身体,他们就得改变奔跑方式,从而使奔跑速度慢了下来。

       Kerry Monte said, a large lizard legs could not support their body, they have to change therunning mode, so that the running speed slow down.

美国PTA网球教练认证问题

       截止到今天,常见的动作捕捉技术从原理上说可分为以下五种:光学式,惯性式,机械式,声学式,电磁式。

       人体运动捕捉设备

       1)光学式动作捕捉,顾名思义,是通过光学原理来完场物体的捕捉和定位的。是通过光学镜头捕捉固定在人体或是物体上面的marker的位置信息来完成动作姿态捕捉。光学式动作捕捉依靠一整套精密而复杂的光学摄像头来实现,它通过计算机视觉原理,由多个高速摄像机从不同角度对目标特征点进行跟踪来完成全身的动作的捕捉。光学动作捕捉可分为被动式和主动式两种。这个分类是从marker来区别的。主动式是指marker是主动发光甚至可以自带ID编码的,这样镜头在视野中可以通过marker自身发光来观测它,并记录捕捉到其的运动轨迹。而被动式光学动作捕捉是通过镜头本身自带的灯板发出特定波长的红外光,照射到marker上,marker是通过特殊反光处理,可以反射镜头灯板发出的红外光,这样镜头就能在视野里捕捉记录该marker的运动轨迹。

       2)惯性动作捕捉则是采用惯性导航传感器AHRS(航姿参考系统)、IMU(惯性测量单元)测量被捕捉者或物体的运动加速度、方位、倾斜角等特性。惯性动作捕捉需要各类无线控件,电池组,传感器等一些配件。类似一个整装衣服穿在身上,通过各个部位的传感器来捕捉人体或物体的数据。

       3)机械式动作捕捉系统依靠机械装置来跟踪和测量运动轨迹。典型的系统由多个关节和刚性连杆组成,在可转动的关节中装有角度传感器,可以测得关节转动角度的变化情况。装置运动时,根据角度传感器所测得的角度变化和连杆的长度,可以得出杆件末端点在空间中的位置和运动轨迹。

       4)声学式动作捕捉系统一般由发送装置、接收系统和处理系统组成。发送装置一般是指超声波发生器,接收系统一般由三个以上的超声探头组成。通过测量声波从一个发送装置到传感器的时间或者相位差,确定到接受传感器的距离,由三个呈三角排列的接收传感器得到的距离信息解算出超声发生器到接收器的位置和方向。

       5)电磁式动作捕捉系统一般由发射源、接收传感器和数据处理单元组成。发射源在空间产生按一定时空规律分布的电磁场;接收传感器安置在表演者身体的关键位置,随着表演者的动作在电磁场中运动,接收传感器将接收到的信号通过电缆或无线方式传送给处理单元,根据这些信号可以解算出每个传感器的空间位置和方向。

怎么写 review paper

       美国职业网球协会

       根据年龄、经历以及是否成功完成认证考试,USPTA新认证成员将从低到高分为三个等级,分别为:职业3级教练员,职业2级教练员,职业1级教练员。职业水平分级是衡量教练员整体水平的标准,也是USPTA教练员主要的分级。它同注册会员、合作会员、荣誉会员及发展级教练员的分类不同,因为后三类会员不需要通过认证考试。

       中文名:美国职业网球协会

       英文名:USPTA(United States Professional Tennis Association )

       美国职业网协会(USPTA)成立于1927年,是世界上历史最悠久,规模最大的网球职业教练员培训机构。

       USPTA在全世界拥有超过15,000名会员。其中包括5000名国际会员,这些会员遍布全球超过60个国家,同时,会员数量以每年1000人不断递增。

       USPTA为不同等级的网球职业教练员提供机会,以提高教学技术水平,以及扩充商业知识。协会还开设网站、论坛,便于会员间的信息传递、思想交流及经验分享。

       USPTA的使命——USPTA的目标是提高职业和普通网球教练员的整体素质和水平。当今,对于职业网球教练员的职责,除了传统意义上的教学,还需要他们具有商业技能和社会责任。USPTA帮助其会员面对此类挑战。

       认证是USPTA最基本的会员权益,也是网球俱乐部雇佣教练一个重要的因素。

       除以上所述分级外,USPTA职业教练员可达到精英级别,即职业大师级教练员。该级别人数约占总成员人数的1%。

       职业1级教练员

       申请人必须全部三个部分(技术考试、教学考试、笔试)全部达到认证考试的职业1级教练员标准。

       职业2级教练员

       认证考试全部三门考试中,申请人最低一门的成绩达到职业2级教练员标准。

       职业3级教练员

       认证考试全部三门考试中,申请人最低一门的成绩达到职业3级教练员标准。

       不合格

       申请人有一门或以上考试未能达到职业三级教练员标准,则被视为不合格。

       该考试包括以下几部分: ·技术考试(场上)- 申请人将示范各种击球技能,以考察击球准确性、连贯性、击球类型以及球的旋转。技术考试的内容包括正手、反手、发球、截击、挑高球、放小球及高压球。

       ·教学考试(场上)- 申请人将展示各类握拍方式、分析错误击球的能力、进行单独授课及集体授课的能力。

       ·笔试(教室或在线)- 申请人将完成一份四选一的试题,共100道。笔试题目考核内容分为以下几类:教学技能、击球技能、商业及项目活动、职业道德准则、网球规则、网球历史、球场维护、NTRP、USPTA历史、短式网球,以及网球装备(包括拍线)。

       USPTA会员共分为七类:申请会员、认证会员、发展级教练员、合作会员、荣誉会员、轮椅认证教练员及退休会员。

       申请会员

       这是在成为认证会员前的暂时教学分类,直到申请人成功完成USPTA教练员认证考试。

       认证会员

       成功完成USPTA教练员认证考试(即可达到该教学分类)的会员,可参与职业3,2,1级教练员的分类评级。

       合作会员

       非教学分类,不需要认证考试。

       荣誉会员

       通过USPTA执行委员会投票表决,授予为网球事业或USPTA做出杰出贡献的人士以荣誉会员称号。同样不需要认证考试。

       退休会员

       现已退休的前(网球教师分类)会员。

       USPTA发展级教练员

       为已经在从事网球教学的申请人所设计——比如高中网球教练、娱乐性网球场所教练、或其他兼职教练——但此类会员尚未成为全职的职业网球教练员。

       轮椅认证教练员

       该项目为职业教练提供新的教学机遇,并为轮椅网球运动的发展服务。

       USPTA 展望——USPTA将成为世界领先的具有职业网球教练员认证资格的专业协会,将被视为集博学多才的网球专家,行业领头人于一体的组织机构,同时也将是各领域必不可少的商业伙伴。USPTA为会员提供最高层次的学习平台和项目,以使其在网球领域内增加谋生手段,创造就业机会,推广网球运动的发展。

       USPTA's certification and education programs are designed to elevate the standards of tennis-teaching professionals and coaches. The certification process was revised for 2014, streamlining the certification categories and testing process. All certified members are required to earn 6 credits of continuing education every three years to maintain their membership. To help them achieve that, USPTA offers the World Conference, division conferences and workshops, DVDs and online courses.

       Master Professional

       Qualified applicants must hold an Elite Professional rating for 10 years, complete a required number of continuing education hours and fulfill a broad spectrum of industry service. The Master Professional Committee makes the final decision on the review of applicants. Master Professionals are required to earn 6 credits every three years to maintain their membership. These members should be capable of high-level jobs such as general manager, director of tennis operations or director of tennis.

       Master Professional application

       Checklist of requirements

       Creating an electronic scrapbook

       Upgrades

       Professional to Elite Professional

       To upgrade to Elite Professional, you must successfully complete the following exams:

       Written Elite exam (online) – based on four subject areas. There are at least two specialty courses available that are associated with each topic.

       Business (budgets, management, staffing, retail, customer service, etc.)

       Programming (lessons, clinics, activities, events, etc.)

       Sport science (motor skills, biomechanics, sport physiology, sport psychology, etc.)

       Tennis operations (program implementation, program calendar, staff supervision, court maintenance, etc.)

       Feeding competency (Elite level)

       Stroke analysis (revised online exam)

       You must earn 16 specialty course credits in the four areas listed above plus 24 APC credits. (Once this has been met, it doesn't have to be repeated.)

       You also must submit documentation that you have three years' full-time tennis-teaching experience.

       Register by mail or call the Membership Department at 800-877-8248 for your upgrade fee. Applicants can register by phone by providing a credit card number.

       You will receive an email of confirmation for the exam, including site information.

       Recreational Coach to Professional

       If you are interested in upgrading from Recreational Coach, you must pay the application fee of $175. Once this fee has been paid, we will email the study materials, PTCA I, to you. You also need to pay the difference between Recreational Coach and Professional dues. Please contact the Membership Department for your dues amount.

       At that time, you can register for the exam. Click here for a complete list of test dates. You will receive an email of confirmation for the exam, including site information.

       Test results take four to six weeks to process. They are mailed via USPS.

       If you took the Professional-level exam and received a Recreational Coach rating, you will receive an eligibility date for when you can attempt to upgrade. To prepare for the exam, study the portions on which you received the RC rating. You will only need to retake those portions.

曹艳平的学术成果

       对于研究生来说, 撰写关于一个主题的评论文章(review paper)是课堂上老师经常布置的大作业 project. 在美的第一个学期就遇到了这样的大作业, 起初还是依照往常的做法上 Google Scholar. 老师给出的主题往往比较宽泛, 没有经验, 把握不好关键词. 一阵铺天盖地的搜索之后, 好不容易找到几篇貌似有点联系的文章. 在接下来一段痛苦的阅读之后, 可能又会从参考文献中发掘更有价值的文章, 于是转头再 Google Scholar. 如此周而复始, 不仅耗时耗力, 还常常会被各种因素转移了注意力, 不断地更改自己的 Topic, 以致工作效率极低. 我遇到的布置大作业的课程是佛大 MAE 系的新晋助理教授 Tommy Angelini 的 Biomechanics of Soft Tissues 硕士课程, 通过他的授课以及课下的交谈, 我对于评论文章(review paper)的撰写方法有了彻底崭新的认识, 本文简述一二, 希望可以帮助曾和我遇到同样困惑的人.

       手拿一个宽泛的题目, 我们首先需要确定一个具体的方向. 以我遇到的课程为例, 教授给我们的要求就是和本课程相关即可, 可谓非常宽泛. 我确定的题目是细胞力学特性的测量方法. 确定好题目以后, 就需要寻找合适的数据库, 当然, Google Scholar 是很好的工具. 我们可以用它快速寻找我们感兴趣的文章, 但是撰写评论文章很多时候需要提取多篇文章之间的承接关系或者横向联系. 这个时候就需要更专业的工具了. 这里介绍的是大名鼎鼎的SCI索引, 此前我也是只闻其名. 下面就谈谈怎么使用SCI索引做更专业的文章搜索.

       SCI 索引的网页数据库现在由 Thomson Reuters 公司运营, 当然使用它的前提是学校购买了这个数据库的使用权.

       以我前述的题目为例, 我首先在 Google Scholar 里找到一篇我感兴趣的和我的题目有关的文章, 题为”Entropy-Driven Tension and Bending Elasticity in Condensed-Fluid Membranes”, 我们就可以在上图的搜索栏中键入相关信息找到这篇文章:

       我们可以看到这篇著名的文章被引用过超过570次, 可见它在这个研究方向上的影响力. 那些引用了很多参考文献, 更重要的是被引用过很多次的文章, 就是我们所谓的节点文章(node paper), 它们就好像纷繁复杂的网络里面的节点, 可以帮助我们理清线索. 点开文章的链接我们可以看见诸如摘要, 作者姓名, 文章来源, 发表年份, 关键字等重要信息:

       更重要的是通过下面这个链接:

       我们可以看见引用了这篇文章的所有文章:

       通过快速浏览这些文章的题目和被引用的次数, 我们就可以很快筛选出和第一篇文章紧密相关, 同时又是很有影响力的文章, 也就是我们所谓的下一篇节点文章(node paper). 如此继续下去, 我们最后会得到几篇文章, 它们具有下面的特点: 1. 它们相互联系, 相互承接; 2. 它们都是与我们的题目紧密相关的; 3. 它们被引用的次数说明了它们在这个方向上的权威性. 这不就是我们需要的了吗? 用这样的方法我们可以更高效的找到我们希望看到的文章.

       在这个寻找文章的过程中, 我们可能需要看100个文章的题目, 20个文章的摘要, 最后确定下5-8篇需要通篇浏览的文章作为我们撰写评论文章的参考文献. 注意这里用到的词语是浏览, 这就涉及到另一个话题, 如何阅读文章(paper). 事实上, 在如今信息泛滥的时代, 真正值得逐句细读理解的文章凤毛麟角, 绝大部分的文章都可以按照下面的模式来阅读, 包括前面提到的5-8篇等待通篇浏览的文章:

       1. 阅读摘要, 一篇文章可以被发表, 有一个最基本的条件, 它的摘要吸引了评文者的目光. 这也意味着, 他写的摘要一定是简明扼要地表达了文章的主旨, 读者可以通过摘要对研究者的工作有最直接明晰的理解.

       2. 跳过文章的主体, 直奔结论, 结论往往是摘要的另一种表达方式. 但是不一样的是, 结论更强调研究者的成果和创新之处. 受到篇幅的限制, 研究者在这一部分仍会保持简明的书写原则.

       3. 如果有的文章包含讨论的部分, 作者会在这一部分更细致的讨论他研究工作的价值和值得注意的部分细节.

       4. 文章的插图, 从一个写作者的立场来看, 他会更愿意在有限的篇幅里突出价值点, 而较之于文字, 图表显然更生动直白, 所以通过图表以及相关的说明, 读者很容易理解研究者想要表达的意思.

       5. 如果至此你还没有理解研究者的工作, 可以重复上面的工作, 并快速搜索文章的主体, 寻找自己需要的信息. 始终要记住的一点是, 文章主体里大段大段描述性的文字是没有多少价值的.

       或者你可以找我们帮忙!

麻烦哪位英语高手分析一下这句话的结构~~That understanding took the later

       (1). 压痕实验力学分析

       [1] Zhang, M. G., Cao, Y. P., Li, G. Y., Feng, X. Q. (2014): Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials, Biomechanics and Modeling in Mechanobiology, 13 (1), 1-11.

       [2] Cao, Y. P., Zhang, M. G., Feng, X. Q. (2013): Indentation method for measuring the viscoelastic kernel function of nonlinear viscoelastic soft materials, Journal of Materials Research, 28, 806-816.

       [3] Cao Y. P., Chen, K. L. (2012): Theoretical and computational modeling of instrumented indentation of viscoelastic composites. Mechanics of Time-Dependent Materials, 16, 1-18.

       [4] Cao, Y. P., Ji X. Y., Feng X. Q. (2011): On determination of the damping factor of linear viscoelastic materials using dynamic indentation: a theoretical study. Science China G. 54, 598-605.

       [5] Qian X. Q., Cao, Y. P., Liu Z. C., Lu J. (2010): Influence of hardening behaviour of elastoplastic materials on the determination of elastic modulus using indentation tests, Material Science and Engineering: A. 527, 4751.

       [6] Cao, Y. P., Ji X. Y., Feng X. Q. (2010): Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation. Philosophical Magazine 90, 1639-1655.

       [7] Keerthika, B., Cao, Y. P., Raabe, D. (2009): Mechanical characterization of viscoelastic-plastic soft matter using spherical indentation. CMC-Computers, Materials & Continua 10, 243-258.

       [8] Cao, Y. P., Ma, D., Raabe, D. (2009): The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomaterialia 5, 240-248.

       [9] Cao, Y. P., Xue, Z. Y., Chen, X., Raabe, D. (2008): Correlation between the flow stress and the nominal indentation hardness of soft metals. Scripta Materialia. 59, 518-521.

       [10] Qian, X. Q., Cao, Y. P., Zhang, J. Y., Raabe, D., Yao, Z. H., Fei, B. J. (2008): An inverse approach to determine the mechanical properties of elastoplastic materials using indentation tests. CMC-Computers, Materials & Continua. 7, 33-42.

       [11] Cao, Y. P. (2007): Determination of the creep exponent of a power-law creep solid using indentation tests. Mechanics of Time-dependent Materials 11, 159-173.

       [12] Qian, X. Q.,Cao, Y. P., Lu J. (2007): Dependence of the representative strain on the hardening functions of metallic materials in indentation. Scripta Materialia 57, 57-60.

       [13] Cao, Y. P., Dao, M., Lu, J. (2007): A precise correcting method for the study of the super-hard material using the nanoindentation. Journal of Materials Research 22, 1255-1264.

       [14] Cao, Y. P., Qian, X. Q., Huber, N. (2007): Spherical indentation into elastoplastic materials: indentation-response based definitions of the representative strain.Mater. Sci. .Eng. A 454-455, 1-13.

       [15] Cao, Y. P. and Huber, N. (2006): Further investigation on the definition of the representative strain in conical indentation. Journal of Materials Research 21, 1810-1821.

       [16] Cao, Y. P., Qian, X. Q., Lu, J. (2006): On the determination of reduced Young’s modulus and hardness of elastoplastic materials using a single sharp indenter. Journal of Materials Research21, 215-224.

       [17] Cao, Y. P., Qian, X. Q., Lu, J. and Yao, Z. H. (2005): An energy-based method to extract plastic properties of metal materials from conical indentation tests. Journal of Materials Research 20, 1194-1206.

       [18] Cao, Y. P. and Lu, J. (2005): Size-dependent sharp indentation-I: A closed-form expression of the indentation loading curve. Journal of the Mechanics and Physics of Solids 53, 33-48.

       [19] Cao, Y. P. and Lu, J. (2005): Size-dependent sharp indentation-II: A reverse algorithm to identify plastic properties of metallic materials. Journal of the Mechanics and Physics of Solids 53, 49-62.

       [20] Cao, Y. P. and Lu, J. (2004): A new method to extract plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Materialia52, 4023-4032.

       [21] Cao, Y. P. and Lu, J. (2004): Depth-sensing instrumented indentation with dual sharp indenters: stability analysis and corresponding regularization schemes. Acta Materialia52, 1143-1153.

       [22] Cao, Y. P. and Lu, J. (2004): A new scheme for computational modelling of conical indentation in plastically graded materials. Journal of Materials Research 19, 1704-1716.

       (2). 软材料和生物材料力学

       [23] Yin, J., Han X., Cao, Y. P., Lu, C. H., (2014): Surface chemical oxidation-induced surface wrinkling patterns on the aqueous-phase-synthesized polydimethysiloxane microspheres, submitted to Scientific Report (accepted for publication).

       [24] Xie, W. H., Huang, X., Cao, Y. P., Li, B., Feng, X. Q. (2014): Buckling and postbuckling of stiff lamellae in a compliant matrix, Composite Science and Technology, 99, 89-95.

       [25] Chen, K. L., Cao, Y. P., Zhang, M. G., Feng, X. Q. (2014): Indentation triggered pattern transformation in hyperelastic soft cellular solids. Comptes Rendus Mécanique 342, 292-298.

       [26] Zhang, M. G., Cao, Y. P., Li, G. Y., Feng, X. Q. (2014): Pipette aspiration of hyperelastic soft materials: Theoretical analysis, simulations and experiments. Journal of the Mechanics and Physics of Solids 68, 179-196.

       [27] Cao, Y. P., Li, G. Y., Zhang, M. G., Feng, X. Q. (2014): Pipette aspiration method for measuring the reduced creep function of viscoelastic soft materials, J. Appl. Mech. 81, 071006.

       [28] Jia, F., Cao, Y. P., Zhao, Y., Feng, X. Q. (2014): Buckling and surface wrinkling of an elastic graded cylinder with elastic modulus arbitrarily varying along radial direction. Int. J. Appl. Mech. 6, 1450003

       [29] Wang, J. W., Cao, Y. P., Feng, X. Q. (2014): Archimedean spiral wrinkles on a film-substrate system induced by torsion, Applied Physics Letters 104, 031910.

       [30] Xie, W. H., Li, B., Cao, Y. P., Feng, X. Q. (2014): Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae. Journal of the Mechanical Behavior of Biomedical Materials 29,594-601.

       [31] Liang, X. D., Zu, Y., Cao, Y. P., Yang, C. (2013): A dual-scale model for Caveolae-mediated vesiculation. Soft Matter 9, 7981-7987.

       [32] Yang, Y., Han, X., Ding, W. L., Jiang, S. C., *Cao, Y. P. and *Lu, C. H. (2013): Controlled Free Edge-Effects in Surface Wrinkling via Combination of External Straining and Selective O2 Plasma Exposure. Langmuir 29, 7170-7177.

       [33] Ding, W. L., Yang Y., Zhao, Y., Jiang, S.C., *Cao, Y. P., *Lu, C. H. (2013): Well-defined orthogonal surface wrinkles directed by wrinkled boundary. Soft Matter 9, 3720-3726.

       [34] Cao, Y. P., Jiang, Y., Li, B., Feng, X. Q., (2012): Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mechanica Solida Sinica 25, 483-492. (Invited paper)

       [35] Cao, Y. P., Jia, F., Feng, X. Q., Zhao, Y., Yu, S. W. (2012): Buckling and post-buckling of a stiff film resting on an elastic graded substrate. International Journal of Solids and Structures 49, 1656-1664.

       [36] Cao, Y. P., Hutchinson, J. W. (2012): Wrinkling phenomena in neo-Hookean film/substrate bilayers. Journal of Applied Mechanics 79, 031019. (Dedicated to Prof. James R Rice for his 70 birthday)

       [37] Li, B., Cao, Y. P., Feng, X. Q., Gao, H. J. (2012): Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8, 5728. (Invited review).

       [38] Zeng, J. F., Zhao, X. H., Cao, Y. P., Hutchinson, J. W. (2012): Localized ridge wrinkling of stiff films on compliant substrates. Journal of the Mechanics and Physics of Solids 60, 1265-1279.

       [39] Jia, F., Cao, Y. P., Liu T. S., Jiang Y., Feng X. Q., Yu S. W. (2012): Wrinkling of a bilayer resting on a soft substrate under in-plane compression. Philosophical Magazine 92, 1554-1568.

       [40] Cao, Y. P., Li, B., Feng, X. Q. (2012): Surface wrinkling and folding of core–shell soft cylinders. Soft Matter 8, 556-562.

       [41] Cao, Y. P., Hutchinson, J. W. (2012): From wrinkles to creases in elastomers:The instability and imperfection-sensitivity of wrinkling. Proceedings of Royal Society A. 468, 94-115.

       [42] Cao, Y. P., Zheng X. P., Jia F., Feng X. Q. (2012): Wrinkling and creasing of a compressed elastoplastic film resting on a soft elastic substrate. Computational Materials Science 57, 111-117.

       [43] Li, B., Jia, F., Cao, Y. P., Feng, X. Q., Gao, H. J. (2011): Surface Wrinkling Patterns on a Core–Shell Soft Sphere. Physical Review Letters 106, 234301.

       [44] Li, B., Cao Y. P., Feng X. Q., Yu S. W. (2011): Mucosal wrinklinginanimal antra induced  byvolumetricgrowth. Applied Physics Letters 98, 153701.

       [45] Li, B., Cao, Y. P., Feng, X. Q., Gao, H. J. (2011): Surface wrinkling of mucosa induced by volumetric growth: Theory, simulation and experiment. Journal of the Mechanics and Physics of Solids 59, 758-774.

       [46] Li, B., Cao, Y. P., Feng X. Q. (2011): Growth and surface folding of esophageal mucosa: A biomechanical model. Journal of Biomechanics 44, 182–188.

       [47] Jia F., Zheng X. P., Cao Y. P., Feng X. Q. (2010): Theoretical study on the bilayer buckling technique for thin film metrology. CMC-Computers, Materials & Continua. 18, 105.

       [48] Zheng X. P., Cao Y. P., Li B., Feng X. Q. Yu, S. W. (2010): Surface wrinkling of nanostructured thin films on a soft substrate. Computational Materials Science 49, 767.

       [49] Zheng X. P., Cao, Y. P., Li B., Feng X. Q. Wang, G. F., (2010): Surface effects in various bending-based test methods for measuring the elastic property of nanowires.Nanotechnology. 21, 205702.

       [50] Cao, Y. P., Zheng X. P., Li B., Feng X. Q. (2009): Determination of the elastic modulus of micro- nanowires/tubes using a buckling-based metrology.Scripta Materialia 61, 1044-1047.

       [51] Zheng X. P., Cao, Y. P., Li B., Feng X. Q., Jiang H. Q., Huang Y. G. (2009): Determining the elastic modulus of thin films using a buckling-based method: computational study. Journal of Physics D: Applied Physics 42, 175506.

       (3). 其它

       [52] Ning, H. M., Li, Y., Hu, N., Cao, Y. P., Yan, C., Azuma, T., Peng, X. H., Wu, L. K., Li, J. H. (2014): Improvement of the Mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves, Science and Technology of Advanced Materials, 15, 035004.

       [53] Zhang, L. Y., Li, Y., Cao, Y. P., Feng, X. Q., Gao, H. J. (2014): Stiffness matrix based form-finding method of tensegrity structures. Engineering Structures 58, 36-48.

       [54] Zhang, L. Y., Li, Y., Cao, Y. P., Feng, X. Q., Gao, H. J. (2013): A numerical method for simulating nonlinear mechanical responses of tensegrity structures under large deformations. Journal of Applied Mechanics-ASME 80, 061018.

       [55] Zhang, L. Y., Li, Y., Cao, Y. P., Feng, X. Q., (2013): A unified solution for self-equilibrium and super-stability of rhombic truncated regular polyhedral tensegrities. International Journal of Solids Structures 50, 234-245.

       [56] Zhang, L. Y., Li, Y., Cao, Y. P., Feng, X. Q., Gao, H. J., (2012): Self-equilibrium and super-stability of truncated regular polyhedral tensegrity structures: A unified analytical solution. Proceedings of Royal Society A. 468, 3323-3347.

       [57] Nie, A., Liu, J.B., Wang, P., Wang, H.T., Yang, W., Gao, Y., Lin, C., Cao, Y .P., Zhuang, Z., (2012): Nano-fingers Pulled from Bulk Silver. Scripta Materialia 66, 247-249.

       [58] Hu, N., Cai, Y. D., Zhu G. J., Tsuji, C., Liu Y. L., Alamusi, Cao, Y. P., (2012): Characterization of damage size in metallic plates using Lamb waves. Structural Health Monitoring 11, 125-137.

       [59] Liu, Y.L., Hu, N., Alamusi, Watanabe, T., Koshin Y., Cao, Y. P., Fukunaga H. (2011): Relative reflection intensity of lamb wave from elliptically-shaped damages in metallic plates. Smart Materials and Structures, 20, 075010.

       [60] Feng X. Q., Li Y, Cao, Y. P., Gu, Y. T. (2010): Design methods of rhombic tensegrity structures. Acta Mechanica Sinica 26, 559.

       [61] Li Y, Feng X. Q., Cao, Y. P., Gao H. J. (2010): A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. International Journal of Solids Structures 47, 1888-1898.

       [62] Ji X. Y.,Cao, Y. P., Feng X. Q. (2010): Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Modelling and Simulations in Material Science and Engineering. 18, 045005.

       [63] Li Y, Feng X. Q., Cao, Y. P., Gao H. J. (2010): Constructing tensegrity structures from one-bar elementary cells. Proceedings of Royal Society A. 466, 45–61.

       [64] Qian, X. Q., Yao, Z. H., Cao, Y. P. and Lu, J. (2005): An Inverse Approach to Construct Residual Stresses Existing in Axisymmetric Structures Using BEM. Engineering Analysis with Boundary Elements 29, 986-999.

       [65] Cao, Y. P., Hu, N., Lu, J., Fukunaga, H., and Yao, Z. H. (2004): A new scheme for designing the penalty factor in 3-D penalty-equilibrating mixed elements. Communications in Numerical Methods in Engineering 20, 455-464.

       [66] Qian, X. Q., Yao, Z. H., Cao, Y. P. and Lu, J. (2004): An inverse approach for constructing residual stress using BEM. Engineering Analysis with Boundary Elements 28, 205-211.

       [67] Cao, Y. P., Hu, N., Lu, J., and Yao, Z. H. (2003): A highly accurate brick element based on a three-field variational principle for elasto-plastic analysis. Finite Elements in Analysis and Design 39, 1155-1171.

       [68] Cao, Y. P., Hu, N., Lu, J., Fukunaga, H., and Yao, Z. H. (2002): A 3-D brick element based on Hu-Washizu variational principle for mesh distortion.International Journal for Numerical Methods in Engineering 53, 2529-2548.

       [69] Cao, Y. P., Hu, N., Lu, J., and Yao, Z. H. (2002): An inverse approach for constructing residual stresses field induced by welding. Journal of Strain Analysis for Engineering Design 37, 345-359.

BISS什么意思

       哥,第一个that前是不是还有东西

       ~~that understanding 是主语

        took 谓语

       the later analysis of biomechanics specialists是宾语

       who后的一长句是非限定性宾语从句 who是引导词,代指 the later analysis of biomechanics specialists。

       that was too complex and unothordox ever to have been invented 也是宾语从句,that是引导词,代指something,即曾经被发明的东西

       through their own mathematical simulations是状语

       BISS,全称Basic Interoperable Scrambling System,为领导韩国鞋业尖端技术和鞋业市场。

       BISS在更新2009年受到好评的国际活动--‘国际尖端鞋功能竞技大赛’、‘Shoe Designer Hill大赛’及‘生体力学性能评价’的基础上,新设‘尖端IT鞋·鞋配品展’。

       ‘步行鞋大展’和‘亚洲生体力学学会(AFBG)及韩国运动力学学会(KSSB)共同研讨会’等多种看点和专门活动。

       BISS2010的展示会参展规模,在去年展示会基础上扩大百分之十--即,预计将有国内外一百三十个参展企业、国内外买家五百余名亲临展示会。

扩展资料:

       BISS展品范围:

       1、原材料:皮革、合成革、鞋底、面料、鞋跟、五金、皮化、IT鞋配件鞋材等。

       2、鞋类:男鞋、女鞋、时装鞋、雪地鞋、休闲鞋、运动鞋、童鞋、室内鞋等。

       3、其他:保健、体育、户外运动、步行、智能、医疗、时尚、安全等。

       展会附带活动:

       1、全球韩籍鞋人大会 。

       2、尖端鞋功能竞技大赛 。

       3、步行鞋大展。

       4、鞋子设计大赛。

       5、尖端IT鞋馆 。

       6、参展企业新产品说明会。

       7、OEM Primary Vendor Fair展览。

       8、亚洲鞋子身体力学及韩国力学学会共同研讨会。

       参考资料来源:百度百科-BISS

       好了,今天关于“biomechanics”的探讨就到这里了。希望大家能够对“biomechanics”有更深入的认识,并且从我的回答中得到一些帮助。