汽车原理动画_汽车原理动画视频

       谢谢大家给我提供关于汽车原理动画的问题集合。我将从不同的角度回答每个问题,并提供一些相关资源和参考资料,以便大家进一步学习和了解。

1.汽车运行的原理

2.汽车的原理是什么

3.小型汽车的行驶原理是什么?

汽车原理动画_汽车原理动画视频

汽车运行的原理

       汽车运行的原理

       发动机工作原理

       一.基本理论

       汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在汽车发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。有两点需注意:

       1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。

       2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在汽车发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽车不用蒸汽机。

       相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。

       二.燃烧是关键

       汽车发动机一般都采用4冲程。(马自达的转子发动机在此不讨论,汽车画报曾做过介绍)

       4冲程分别是:进气、压缩、燃烧、排气。完成这4个过程,发动机运转两周。

       活塞由一个活塞杆和曲轴相联,过程如下

       1.活塞在顶部开始,进气阀打开,活塞往下运动,吸入油气混合气

       2.活塞往顶部运动来压缩油气混合气,使得爆炸更有威力。

       3.当活塞到达顶部时,火花塞放出火花来点燃油气混合气,爆炸使得活塞再次向下运动。

       4.活塞到达底部,排气阀打开,活塞往上运动,尾气从汽缸由排气管排出。

       注意:内燃机最终产生的运动是转动的,活塞的直线往复运动最终由曲轴转化为转动,这样才能驱动汽车

       三.汽缸数

       汽车发动机的核心部件是汽缸,活塞在汽缸内进行往复运动,上面所描述的是单汽缸的运动过程,而实际应用中的发动机都是有多个汽缸的(4缸、6缸、8缸比较常见)。我们通常通过汽缸的排列方式对发动机分类:直列、V或水平对置(当然现在还有大众集团的W型,实际上是两个V组成)。

       不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上。

       四.排量

       混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,最大值和最小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的排量一般在1.5L~4.0L之间。每缸排量0.5L,4缸的排量为2.0L,如果V型排列的6汽缸,那就是V6 3.0升。一般来说,排量表示发动机动力的大小。

       所以增加汽缸数量或增加每个汽缸燃烧室的容积可以获得更多的动力。

       五.发动机的其他部分

       凸轮轴 控制进气阀和排气阀的开闭

       火花塞 火花塞放出火花点燃油气混合气,使得爆炸发生。火花必须在适当的时候放出。

       阀门 进气、出气阀分别在适当的时候打开来吸入油气混合气和排出尾气。在压缩和燃烧时,这两个阀都是关闭的,来保证燃烧室的密封。

       活塞环 在气缸壁和活塞中提供密封:

       1.防止在压缩和燃烧时油气混合气和尾气泄漏进润滑油箱。

       2.防止润滑油进入汽缸内燃烧。

       大多“烧机油”的汽车就是因为发动机太旧:活塞环不再密封引起的(尾气管冒青烟)

       活塞杆 连接活塞环和曲轴,使得活塞和曲轴维持各自的运动。

汽车的原理是什么

       汽车的原理是什么

        请问是汽车的什么原理,我给的是发动机的汽车发动机工作原理概述  往复活塞式内燃机所用的燃料主要是汽油(gasoline)或柴油(diesel)。由于汽油和柴油具有不同的性质,因而在发动机的工作原理和结构上有差异。 一. 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点 汽车发动机原理(4张) 火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。 (1) 吸气冲程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽缸容积逐渐增大,汽缸内气体压力从pr逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点 (图中a 点)汽缸内气体压力小于大气压力0 p ,即pa= (0.80~0.90) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 (2) 压缩冲程(pression stroke) 压缩冲程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 (3) 做功冲程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达 b 点时,其压力降至300~500kPa,温度降至1 200~1 500K。在做功冲程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。 (4) 排气冲程(exhaust stroke) 排气冲程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。 二. 四冲程柴油机工作原理 四冲程柴油机和汽油机一样,每个工作循环也是由进气冲程、压缩冲程、做功冲程和排气冲程组成。由于柴油机以柴油作燃料,与汽油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点压燃着火,也叫压燃式点火,其工作过程及系统结构与汽油机有所不同. (1) 进气冲程 进入汽缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa= (0.85~0.95)p0,比汽油机高。进气终点温度Ta=300~340K,比汽油机低。 (2) 压缩冲程 由于压缩的工质是纯空气,因此柴油机的压......>>

        汽车驱动的原理是什么?

        燃油在密闭的容器中被点燃后能量爆发并通过活塞做功出力,再通过传动机构来推动轮子的转动,让被推动的轮子在被驱动后前行或者倒退.这就是最简单的汽车驱动原理.基本概念  汽车驱动方式是指发动机的布置方式以及驱动轮的数量、位置的形式。一般的车辆都有前、后两排轮子,其中直接由发动机驱动转动,从而推动(或拉动)汽车前进的轮子就是驱动轮。汽车驱动方式对整车的性能、外形及内部尺寸、重量、轴荷分配、制造成本及维修保养等方面均产生重要影响。科学合理地选择驱动型式是汽车总体设计的首要工作之一。  汽车驱动方式的种类  最基本的分类标准是按照驱动轮的数量,可分为两轮驱动和四轮驱动两大类。  一、两轮驱动  在两轮驱动形式中,可根据发动机在车辆的位置以及驱动轮的位置进而细分为前置后驱(FR)、前置前驱(FF)、后置后驱(RR)、中置后驱(MR)等形式。目前,两驱越野车和轿车最常用的是前置后驱形式。  前置后驱(FR)的全称叫做前置发动机后轮驱动,是一种比较传统的驱动形式。其中前排车轮负责转向,由后排车轮来承担整个车辆的驱动工作。在这种驱动形式中,发动机输出的动力全部输送到后驱动桥上,驱动后轮使汽车前进。也就是说,实际的行进中是后轮推动前轮,带动车辆前进。  与两轮驱动类的其他驱动形式相比,前置后驱有比较大的优越性。当车辆在良好的路面上启动、加速或爬坡时,驱动轮的附着压力增大,牵引性明显优于前驱形式。同时,采用前置后驱的车辆还具有良好的操纵稳定性和行驶平顺性,并有利于延长轮胎的使用寿命。除此之外,前置后驱的安排使车辆的发动机、离合器和变速器等总成临近驾驶室,简化了操纵机构的布置和转向机构的结构,这样更加便于车辆的保养和维修。  基于以上的诸多优点,国产宝马325i、530i以及档次更高的进口宝马轿车,宾利、奔驰、捷豹等很多豪华轿车多采用前置后驱这种形式。  二、四轮驱动  不过,如果你买一辆越野车的动机是想要在真正的山野丛林中纵横驰骋的话,就一定别心疼差价,要再狠一狠心,把四轮驱动系统配置整齐。因为,两轮驱动的车辆即使在良好的路面上,碰到雪地或易滑路面等情况也可能打滑,启动加速时也比较容易发生摆尾现象。四轮驱动就可以防止这种现象发生。同时,四轮驱动系统有比两轮驱动更优异的引擎驱动力应用效率,能达到更好的轮胎牵引力与转向力的有效发挥。就安全性来说,也可以形成更好的行车稳定性。  所谓四轮驱动,是指汽车前后轮都有动力,可按行驶路面状态不同而将发动机输出扭矩按不同比例分布在前后所有的轮子上,以提高汽车的行驶能力。一般用4X4或4WD来表示,如果你看见一辆车上标有上述字样,那就表示该车辆拥有四轮驱动的功能。在过去,四轮驱动可是越野车独有的,近年来,一些高档轿车和豪华跑车才逐渐添置了这项配置。  四轮驱动又有以下的分类:  1、分时四驱(Part-time 4WD)  这是一种驾驶者可以在两驱和四驱之间手动选择的四轮驱动系统,由驾驶员根据路面情况,通过接通或断开分动器来变化两轮驱动或四轮驱动模式,这也是一般越野车或四驱SUV最常见的驱动模式。最显著的优点是可根据实际情况来选取驱动模式,比较经济。在公路上行驶使用两轮驱动档;当遇到雨雪路况时,选择四抡驱动,增强了车辆的附着力和操控性。  2、全时四驱(Full-time 4WD)  这种传动系统不需要驾驶人选择操作,前后车轮永远维持四轮驱动模式,行驶时将发动机输出扭矩按50:50设定在前后轮上,使前后排车轮保持等量的扭矩。全时驱动系统具有良好的驾驶操控性和行驶循迹性,有了全时四驱系统,就可以在铺覆路面上......>>

        汽车行驶基本原理是什么

        发动机输出动力,经离合器\变速箱\传动轴\主传动器\差速器\半轴\驱动轮,驱动轮转动给地面一个力,地面给车轮一个反作用力即牵引力,使车辆行使.

        燃油在反动机汽缸内燃烧,使汽缸内的气体迅速膨胀,推动活塞运动,产生动力.

       汽油按辛烷值含量划分牌号,汽车按压缩比选择汽油牌号,压缩比越高,选顶牌号越高.70#90#93#97#

        柴油按凝点划分牌号,柴油车按当地最低气温选择柴油牌号,车用轻柴油可粉为:10#0#-10#-20#-35#-50#

        汽车自动档的工作原理是什么?

        自动变速器,利用行星齿轮机构进行变速,它能根据油门踏板程 自动挡度和车速变化,自动地进行变速。而驾驶者只需操纵加速踏板控制车速即可。一般来讲,汽车上常用的自动变速器有以下几种类型:液力自动变速器、液亥传动自动变速器、电力传动自动变速器、有级式机械自动变速器和无级式机械自动变速器等。最常见的是液力自动变速器。液力自动变速器主要是由液压控制的齿轮变速系统构成,主要包含自动离合器和自动变速器两大部分。它能够根据油门的开度和车速的变化,自动地进行换挡。无级变速器是由两组变速轮盘和一条传动带组成的,属于自动变速器的一种,但它能克服普通自动变速器“突然换挡”、油门反应慢、油耗高等缺点。比传统自动变速器结构简单,体积更小,它可以自由改变传动比,从而实现全程无级变速,使汽车的车速变化平稳,没有传统变速器换挡时那种“顿”的感觉。手动/自动变速器。可使高性能跑车不必受限于传统的自动挡束缚,让驾驶者也能享受手动换挡的乐趣。此型车在其挡位上设有“+”、“-”选择挡位。在D挡时,可自由变换降挡(-)或加挡(+),如同手动挡一样。驾驶者可以在入弯前像手动挡般地强迫降挡减速,出弯时可以低中挡加油出弯。现在的自动挡车的方向盘上又增加了“+”、“-”换挡按钮,驾驶者就能手不离开方向盘加减挡。

        盘车原理是什么?

        汽轮机盘车的作用

        汽轮机冲动转子前或停机后,进入或积存在汽缸内的蒸汽使上缸温度比下缸温度高,从而使转子不均匀受热或冷却,产生弯曲变形。因而在冲转前和停机后,必须使转子以一定的速度持续转动,以保证其均匀受热或冷却。换句话说,冲转前和停机后盘车可以消除转子热弯曲。同时还有减小上下气缸的温差和减少冲转力矩的功用,还可在启动前检查汽轮机动静之间是否有摩擦及润滑系统工作是否正常。

        2. 盘车有两种方式:小机组采用人力手动盘车,中型和大型机组都采用电动盘车

        3. 电动盘车装置主要有两种形式:

        1) 具有螺旋轴的电动盘车装置(大多数国产中小型汽轮机及125、300MW机组采用)

        2) 具有摆动齿轮的电动盘车装置(国产机组50MW、100MW、200MW采用)

        4.具有螺旋轴电动盘车装置和工作原理

        螺旋轴电动盘车装置由电动机、联轴器、小齿轮、大齿轮、齧合齿轮、螺旋轴、盘车齿轮、保险销、手柄等组成。齧合齿轮内表面铣有螺旋齿与螺旋轴相齧合,齧合齿轮沿螺旋轴可以左右滑动。

        当需要投入盘车时,先拔出保险销,推手柄,手盘电动机联轴器直至齧合齿轮与盘车齿轮全部齧合。当手柄被推至工作位置时,行程开关接点闭合,接通盘车电源,电动机起动至全速后,带动汽轮机转子转动进行盘车。

        当汽轮机起动冲转后,转子的转速高于盘车转速时,使齧合齿轮由原来的主动轮变为被动轮,即盘车齿轮带动齧合齿轮转动,螺旋轴的轴向作用力改变方向,齧合齿轮与螺旋轴产生相对转动,并沿螺旋轴移动退出齧合位置,手柄随之反方向转动至停用位置,断开行程开关,电动机停转,基本停止工作。

        若需手动停止盘车,可手揿盘车电动机停按钮,电动机停转,齧合齿轮退出,盘车停止。

        5.具有摆动齿轮的盘车装置的构造和工作原理

        装置主要由齿轮组、摆动壳、曲柄、连杆、手轮、行程开关、弹簧等组成。齿轮组通过两次减速后带动转子转动。

        盘车装置脱开时,摆动壳被杠杆系统吊起,摆动齿轮与盘车齿轮分离;行程开关断路,电动机不转,首轮上的缩紧销将手轮锁在脱开位置;连杆在压缩弹簧的作用下推紧曲柄,整个装置不能运动。

        投入盘车时,拔出锁紧销,逆时针转动手轮,与手轮同轴的曲柄随之转动,克服压缩弹簧的推力,带动连杆向右下方运动;拉杆同时下降,使摆动壳和摆动轮向下摆动,当摆动轮与盘车齿轮进入齧合状态时,行程开关闭合,接通电动机电源,齿轮组即开始转动。由于转子尚处于静止状态,摆动齿轮带着摆动壳继续顺时针摆动,直到被顶杆顶住。此时摆动壳处于中间位置,摆动轮与盘车齿轮完全齧合并开始传递力矩,使转子转动起来。

        盘车装置自动脱开过程如下:冲动转子以后,盘车齿轮的转速突然升高,而摆动齿轮由主动轮变为被动轮,被迅速推向右方并带着摆动壳逆时针摆动,推动拉杆上升。当拉杆上端点超过平衡位置时,连杆在压缩弹簧的推动下推著曲柄逆时针旋转,顺势将摆动壳拉起,直到手轮转过预定的角度,锁紧销自动落入锁孔将手轮锁住。此时行程开关动作,切断电动机电源,各齿轮均停止转动,盘车装置又恢复到投用前脱开状态。操作盘车停止按钮,切断电源,也可使盘车装置退出工作

        所谓“盘车”是指在启动电机前,用人力将电机转动几圈,用以判断由电机带动的负荷(即机械或传动部分)是否有卡死而阻力增大的情况,从而不会使电机的启动负荷变大而损坏电机(即烧坏)。

        所以,一般在停机一个班(8小时)后,再启动电机时,就要盘车。...>>

        汽车中控的原理是什么?

        汽车中控的基本原理:

        从车主身边发出微弱的电波,由汽车天线接收该电波信号,经电子控制器ECU识别信号代码,再由该系统的执行器(电动机或电磁经理圈)执行启/闭锁的动作。该系统主要由发射机和接收机两在部分组成。

        1、发射机

        由发射开关、发射天线(键板)、集成电路等组成。在键板上与信号发送电路组成一体。从识别代码存储回路到FSK调制回路,由于采用单芯片集成电路而使何种小型化,在电路的相反一侧装有揿钮型的锂电池。发射频率按照使用国的电波善进行选择,一般可使用27、40、62MHz频带。发射开关每按揿钮一次进行一次信号发送。

        2、接收机

        发射机利用FM调制发出识别代码,通过汽车的FM天线进行接收,并利用分配器进入接收机ECU的FM高频增幅处理器进行解调,与被解调节器的识别代码进行比较;如果是正确的代码,就输入控制电路并使执行器工作。

        汽车上BA的工作原理是什么?

        BA紧急制动力辅助功能以及工作原理介绍:

        BA: BrakeAssist(BA),紧急刹车时,根据踩的速度、力度,制动系统自动感知而输出更强的制动力。主要作用:

        危急状态时刹车,由于速度快,踩的力度小,有时输出的制动力很少。

        这时的驾驶者并不是一直死踩刹车,有可能造成制动力降低。

        “BA系统”在急速地踩刹车时自动判断是否紧急制动,即使力量不够也会加大制动力输出。

        “BA系统”在有意识刹车时,自动减少辅助制动力,减缓刹车时的唐突感。

        制动辅助(BA)的功能:在紧急制动时,提供一个附加的制动力来帮助没能及时形成较大制动力的驾驶员,制动助力加快制动踏板的移动;当司机施加在制动踏板上的制动力不太大时,增加制动力,使车辆的紧急制动性能最佳。

        制动辅助装置的工作原理

        早期的刹车助力装置是纯机械式的,经过多年的改进研发,现在的制动辅助装置功能所达到的智能化、人性化已非当年的机械装置可以想象。

        现在的制动辅助装置充分运用了微电脑技术,其工作原理是这样的:驾驶者踩下刹车踏板时会打开一个机械式阀门,让外部空气经此阀门流入通常会低于“底部压力”的工作室,在工作室中形成一个较高的压力区,而由于真空室中的压力比“底部压力”低,活动的盘式膜片会随着两室之间的压差产生位置变化,并反映到刹车总泵的活塞杆上。位移探头负责监视刹车踏板的动作速度,一旦察觉驾驶者做了急刹车动作,就会马上通知刹车辅助装置控制仪,由电脑进行换算,并命令控制电磁阀以某一特定频率进行动作。随即空气以飞快的速度通过这个电磁阀进入工作室,形成冲击状高压。结果是:即使驾驶者没有大力踩下刹车踏板,只是简单做了个急刹车动作,刹车辅助装置也会善解人意地帮助他(她)加大刹车力度。在这套系统中还有个出气开关,其作用是在驾驶者的脚从刹车踏板上移开后,电磁阀立即关闭。

        EVA紧急制动辅助系统

        上面介绍了普通制动辅助装置的工作原理。在实际使用过程中,这套装置在介入工作时有时会比较生硬,特别是当驾驶者并不想完全释放制动力而仅仅因为踩了一脚急刹车的情况下,普通的制动辅助装置会因过于“配合”而使车辆猛然刹住。这不仅会令不熟悉情形的驾驶者感到不适应,还会造成后车追尾的危险。

        经过进一步的改进,EVA紧急制动辅助装置诞生。

        和普通的制动辅助装置相比,EVA的工作原理大致相同。但当电脑捕捉到驾驶者的刹车意图后,会根据驾驶者踩下刹车的速度和力量分析所应提供的制动力,并通过嵌入式液压助力系统准确执行。如果驾驶者因突 *** 况踩了一脚急刹车,却由于某种原因右脚并没有对刹车踏板实施最大力量,这时,EVA辅助系统会分析驾驶者的刹车意图,当它判断驾驶者采取的是紧急制动时,它会让制动力量一直保持到驾驶者的右脚完全离开刹车踏板,这样可以避免驾驶者由于措施采取不当造成危险。

        EVA紧急制动辅助系统的好处,就是可以通过驾驶者踩踏刹车踏板的力量和速度分析其制动的真实意图,不会因为普通的“点刹”而使车辆完全制动,也不会在驾驶者制动力度不足的情况下放弃制动干预叮强度。而且,在大多数工作状态下,EVA是非常温和的,不会给驾驶者或乘座者带来多少不便。目前,国内中高级轿车中只有东风标致307等极少数车型运用了这种新进技术。

        BA(BrakeAssist)-辅助刹车系统

        紧急刹车时,根据踩的速度、力度,制动系统自动感知而输出更强的制动力。

        1.危急状态时刹车,由于速度快,踩的力度小,有时输出的制动力很少。

        2.这时的驾驶者并不是一直死踩刹车,有可能造成制动力降低。

        3.“BA系统”......>>

        汽车发动机的基本工作原理是什么?

        发动机的基本工作原理是将热能转化为动能:

        1、首先在外力的作用下(起动机的带动)通过曲轴带动活塞作往复运动,一旦气缸作功,便可以脱离外力自行工作

        2、活塞由上止点向下止点运动时,进气门打开,开始实现进气(汽油车进的是混合气,柴油机进的是纯空气)------进气

        3、活塞由下止点向上止点运动时,进排气门关闭,将刚才的进气进行压缩,并产生高温------压缩

        4、在压缩终了时,汽油车的混和气在火花塞的作用下进行点火燃烧、柴油车的高温气体在喷油器的作用下进行喷油而自行燃烧,气缸内的气体在燃烧的作用下急剧膨胀,促使活塞下行------作功

        5、活塞再由下止点向上止点运动时,排气门打开进行排气,并准备下一个循环。

小型汽车的行驶原理是什么?

       汽车原理简单理解就是:发动机发力,通过传动系统,带动四个车轮运动,进而带动整辆车运动。

       目前主流的发动机,有涡轮增压发动机和自然吸气发动机两种。

       汽车的车身结构,分为承载式车身与非承载式车身两种。两者的区别:

       非承载式车身有根大梁贯穿整个车身结构,底盘的强度较高,抗颠簸性能好。

       承载式车身汽车的整个车身是为一体的,没有贯穿整体的大梁,发动机、传动系统、前后悬挂等部件都装配到车身上。

       可以理解为非承载式车身,车身与底盘是分开;承载式车身,车身与底盘是一体的。

       大多数汽车都是承载式车身(路上见到的车,绝大部分都是承载式车身),只有一些硬派SUV,采用了非承载式车身。

       附发动机工作原理

       发动机的动力来源于气缸内部。发动机气缸就是一个把燃料的内能转化为动能的场所,可以简单理解为,燃料在汽缸内燃烧,产生巨大压力推动活塞上下运动,通过连杆把力传给曲轴,最终转化为旋转运动,再通过变速器和传动轴,把动力传递到驱动车轮上,从而推动汽车前进。

       小车要运动,并以一定的bai速度行驶,必须由外界沿汽车行驶方向施加一个驱动力,用以克服汽车行驶中所受到的各种阻力。

       01

       汽车的驱动力Ft

       驱动力是由发动机的转矩经传动系统传至驱动轮得到的。汽车发动机产生的有效转矩Te,经汽车传动系统传到驱动轮上,在驱动轮上作用转矩Tt,从而产生对地面的一个圆周力F0,与此同时,引起地面对驱动轮产生一个与汽车行驶方向一致的切向反作用力Ft,此切向反作用力即为汽车的驱动力Ft。如下图所示。

       02

       汽车的行驶阻力

       汽车在道路上行驶时一般有滚动阻力、空气阻力、坡道阻力和加速阻力四种。

       (1) 滚动阻力Ff:

       滚动阻力是当车轮在路面上滚动时,由于两者间的相互作用力和相应变形所引起的能量损失的总称。当汽车在硬路面上行驶时,车轮滚动,轮胎圆周的各个部分被不断地压缩、变形,然后又不断地恢复变形。在这个变形过程中,橡胶分子之间发生摩擦,伴随摩擦而发热,且向大气散发。使轮胎变形所做的功不能全部回收,从而消耗了汽车的输出功率。这部分功率损失称为轮胎的弹性迟滞损失。当汽车在软路面上行驶时,其滚动阻力则来自松软路面变形和轮胎弹性变形的迟滞损失。

       (2) 空气阻力Fw:

       汽车是在空气介质中行驶的,汽车相对于空气运动时,空气作用力在行驶方向上的分力称为空气阻力。空气阻力分为摩擦阻力与压力阻力两部分。摩擦阻力是由于空气的黏性在车身表面产生的切向力的合力在行驶方向的分力。摩擦阻力与车身表面质量及表面有关,约占空气阻力的8%~10%。压力阻力是作用在汽车外形表面上的法向压力的合力在行驶方向的分力。压力阻力中的形状阻力占主要部分,所以车身主体形状是影响空气阻力的主要因素,改进车身流线型体是减少空气阻力的有效途径。

       (3) 坡道阻力Fi:

       汽车在纵向坡道上坡行驶时,汽车质量产生与地面平行的分力,其分力方向与汽车行驶方向相反,即形成汽车的上坡阻力。汽车的上坡阻力与坡度值成正比。

       (4) 加速阻力Fj:

       汽车加速行驶时,需要克服其质量加速运动时的惯性力,就是加速阻力。汽车的质量分为平移质量和旋转质量两部分。加速时,不仅要克服汽车平移质量在加速过程中产生的惯性力,同时还要克服旋转质量产生的惯性力偶矩。

       PART

       2汽车的行驶方程式

       汽车行驶时,必须满足驱动和附着条件,即汽车的驱动力应与阻力相平衡,由此得到汽车行方程式:

       Ft= Ff+Fi+Fw+Fj

       上述各阻力中,滚动阻力和空气阻力始终作用于行驶的汽车上,坡度阻力和加速阻力仅在相应行驶条件下存在。在水平道路上等速行驶时就没有坡度阻力和加速阻力。汽车下坡时,Fi为负值,这时汽车重力沿路面方向的分力已不是汽车的行驶阻力,而是动力。汽车减速行驶时,惯性作用力是使汽车前进的力,此时Fj也为负值。

       PART

       3汽车行驶的条件

       为保证汽车在道路上正常行驶,必须具有克服各种行驶阻力的足够驱动力,这就是汽车的驱动条件;使汽车驱动轮与路面不产生滑动与滑移的条件,称为汽车行驶的附着条件。

       01

       汽车行驶的驱动条件

       当汽车驱动力大于滚动阻力、空气阻力、上坡阻力之和时,汽车加速行驶;驱动力等于上述阻力之和,汽车等速行驶;小于上述阻力,汽车减速行驶直至停车。

       汽车的驱动条件可写成:

       Ft≥Ff+Fw+Fi

       02

       汽车行驶的附着条件

       通常把轮胎不滑转时,地面对车轮的最大切向反作用力的极限值,称为附着力F?。使附着力大于或等于最大驱动力,这就是汽车行驶的附着条件。

       汽车的附着条件可写成:

       Ft≤F?

       式中:F?=Fz?,?称为附着系数,它是由路面和轮胎决定的;Fz为驱动轮法向反作用力。

       好了,今天关于“汽车原理动画”的话题就讲到这里了。希望大家能够通过我的介绍对“汽车原理动画”有更全面、深入的认识,并且能够在今后的实践中更好地运用所学知识。